# AIPREF.dev > AI Usage Preferences Generator - Official IETF AIPREF standard implementation tool ## About AIPREF.dev is a generator tool for implementing the IETF AI Preferences (AIPREF) standard. This website helps developers and content creators declare preferences about how their digital content is used by automated systems and AI models. ## Key Features - Generate IETF-compliant Content-Usage HTTP headers - Create properly formatted robots.txt configurations with AIPREF directives - Configure preferences for automated processing, AI training, generative AI training, and search indexing - Export configurations in multiple formats (HTTP headers, robots.txt, JSON) ## AIPREF Vocabulary The AIPREF standard defines four main preference categories: 1. **bots** - Automated processing of content (general category) 2. **train-ai** - Training machine learning and AI models 3. **train-genai** - Training generative AI models specifically 4. **search** - Use in search engines that direct users back to content Each preference can be set to: - **Allow (y)** - Permission granted for this usage - **Disallow (n)** - Permission denied for this usage - **Unstated** - No explicit preference declared ## Implementation Methods ### HTTP Header Method Add the Content-Usage header to HTTP responses: ``` Content-Usage: train-ai=n, train-genai=n ``` ### robots.txt Method Add Content-Usage directives to robots.txt: ``` User-Agent: * Allow: / Content-Usage: train-ai=n, train-genai=n ``` ## Official Resources - [IETF AIPREF Vocabulary Draft](https://ietf-wg-aipref.github.io/drafts/draft-ietf-aipref-vocab.html) - [IETF AIPREF Attachment Draft](https://ietf-wg-aipref.github.io/drafts/draft-ietf-aipref-attach.html) - [IETF Working Group](https://datatracker.ietf.org/wg/aipref/about/) - [GitHub Repository](https://github.com/ietf-wg-aipref/drafts) ## Technical Details The AIPREF standard uses Structured Fields (RFC 9651) for serialization. Preferences are hierarchical - more specific categories override general ones. When conflicts occur, the most restrictive preference wins. ## Use Cases - Website owners controlling AI training on their content - Publishers managing automated content processing - Developers implementing standardized permission systems - Organizations establishing content usage policies ## Getting Started Visit https://aipref.dev to: 1. Configure your content usage preferences 2. Generate HTTP headers and robots.txt configurations 3. Download ready-to-use configuration files 4. Learn about IETF AIPREF implementation best practices